Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Electron backscatter diffraction (EBSD) is a powerful tool for determining the orientations of near-surface grains in engineering materials. However, many ceramics present challenges for routine EBSD data collection and indexing due to small grain sizes, high crack densities, beam and charge sensitivities, low crystal symmetries, and pseudo-symmetric pattern variants. Micro-cracked monoclinic hafnia, tetragonal hafnon, and hafnia/hafnon composites exhibit all such features, and are used in the present work to show the efficacy of a novel workflow based on a direct detecting EBSD sensor and a state-of-the-art pattern indexing approach. At 5 and 10 keV primary beam energies (where beam-induced damage and surface charge accumulation are minimal), the direct electron detector produces superior diffraction patterns with 10x lower doses compared to a phosphor-coupled indirect detector. Further, pseudo-symmetric variant-related indexing errors from a Hough-based approach (which account for at least 4%-14% of map areas) are easily resolved by dictionary indexing. In short, the workflow unlocks fundamentally new opportunities to characterize materials historically unsuited for EBSD.more » « less
-
Abstract Electron counting can be performed algorithmically for monolithic active pixel sensor direct electron detectors to eliminate readout noise and Landau noise arising from the variability in the amount of deposited energy for each electron. Errors in existing counting algorithms include mistakenly counting a multielectron strike as a single electron event, and inaccurately locating the incident position of the electron due to lateral spread of deposited energy and dark noise. Here, we report a supervised deep learning (DL) approach based on Faster region-based convolutional neural network (R-CNN) to recognize single electron events at varying electron doses and voltages. The DL approach shows high accuracy according to the near-ideal modulation transfer function (MTF) and detector quantum efficiency for sparse images. It predicts, on average, 0.47 pixel deviation from the incident positions for 200 kV electrons versus 0.59 pixel using the conventional counting method. The DL approach also shows better robustness against coincidence loss as the electron dose increases, maintaining the MTF at half Nyquist frequency above 0.83 as the electron density increases to 0.06 e−/pixel. Thus, the DL model extends the advantages of counting analysis to higher dose rates than conventional methods.more » « less
An official website of the United States government
